Genetic and Chemical Activation of TFEB Mediates Clearance of Aggregated α-Synuclein

نویسندگان

  • Kiri Kilpatrick
  • Yimeng Zeng
  • Tommy Hancock
  • Laura Segatori
چکیده

Aggregation of α-synuclein (α-syn) is associated with the development of a number of neurodegenerative diseases, including Parkinson's disease (PD). The formation of α-syn aggregates results from aberrant accumulation of misfolded α-syn and insufficient or impaired activity of the two main intracellular protein degradation systems, namely the ubiquitin-proteasome system and the autophagy-lysosomal pathway. In this study, we investigated the role of transcription factor EB (TFEB), a master regulator of the autophagy-lysosomal pathway, in preventing the accumulation of α-syn aggregates in human neuroglioma cells. We found that TFEB overexpression reduces the accumulation of aggregated α-syn by inducing autophagic clearance of α-syn. Furthermore, we showed that pharmacological activation of TFEB using 2-hydroxypropyl-β-cyclodextrin promotes autophagic clearance of aggregated α-syn. In summary, our findings demonstrate that TFEB modulates autophagic clearance of α-syn and suggest that pharmacological activation of TFEB is a promising strategy to enhance the degradation of α-syn aggregates.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

TFEB-mediated autophagy rescues midbrain dopamine neurons from α-synuclein toxicity.

The aggregation of α-synuclein plays a major role in Parkinson disease (PD) pathogenesis. Recent evidence suggests that defects in the autophagy-mediated clearance of α-synuclein contribute to the progressive loss of nigral dopamine neurons. Using an in vivo model of α-synuclein toxicity, we show that the PD-like neurodegenerative changes induced by excess cellular levels of α-synuclein in nigr...

متن کامل

Secretory carrier membrane protein 5 is an autophagy inhibitor that promotes the secretion of α-synuclein via exosome

Autophagy-lysosomal pathway is a cellular protective system to remove aggregated proteins and damaged organelles. Meanwhile, exosome secretion has emerged as a mode to selectively clear the neurotoxic proteins, such as α-synuclein. Mounting evidence suggests that these two cellular processes are coordinated to facilitate the clearance of toxic cellular waste; however the regulators for the tran...

متن کامل

Aggregate clearance of α-synuclein in Saccharomyces cerevisiae depends more on autophagosome and vacuole function than on the proteasome.

Parkinson disease is the second most common neurodegenerative disease. The molecular hallmark is the accumulation of proteinaceous inclusions termed Lewy bodies containing misfolded and aggregated α-synuclein. The molecular mechanism of clearance of α-synuclein aggregates was addressed using the bakers' yeast Saccharomyces cerevisiae as the model. Overexpression of wild type α-synuclein or the ...

متن کامل

Autophagy master regulator TFEB induces clearance of toxic SERPINA1/α-1-antitrypsin polymers

Deficiency of SERPINA1/AAT [serpin peptidase inhibitor, clade A (α-1 antiproteinase, antitrypsin), member 1/α 1-antitrypsin] results in polymerization and aggregation of mutant SERPINA1 molecules in the endoplasmic reticulum of hepatocytes, triggering liver injury. SERPINA1 deficiency is the most common genetic cause of hepatic disease in children and is frequently responsible for chronic liver...

متن کامل

Mitochondrial and lysosomal biogenesis are activated following PINK1/parkin‐mediated mitophagy

Impairment of the autophagy-lysosome pathway is implicated with the changes in α-synuclein and mitochondrial dysfunction observed in Parkinson's disease (PD). Damaged mitochondria accumulate PINK1, which then recruits parkin, resulting in ubiquitination of mitochondrial proteins. These can then be bound by the autophagic proteins p62/SQSTM1 and LC3, resulting in degradation of mitochondria by m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015